Notso Swift said:Yes, quite possibly, at you.
Amazing you you conveniently ignore some facts presented to you as it suits.
You always come back to "Take 200 grams of the wheels, then take 200 gram of the rider, it has the same effect."
Except it doesn't for the two reasons out lined, (Moment of Inertia and Rotational Dynamics)THEY are facts
What's more the rider is actually a constant.
Same rider 90 kg on Bike A which weighs 10kg, inc 2 kg wheels (100kg total) and Bike B with 8 kg inc 2 kg wheels. The difference is not just the 2% (for those reasons outlined), and even if it was Bike A would still be faster! (That is the Moment of Inertia)
Quite simply Bike A requires more energy to accelerate, since the constant (the rider) supplies that energy it must be slower
If we compare Bike B, with another Bike C, which is 8kg but with 1.5kg wheels, so the same total weight, then this bike has a further benefit (due to Rotational Dynamics) that requires less energy for the wheel to be accelerated, however, on a perfectly flat course this will be negated because the wheel will roll longer (this is also called a flywheel effect)... if it is perfectly flat, that is...
Now none of this has anything to do with the initial question, but that is a long way gone now
YES, moment of inertia differences DO exist but the differences in energy required to spin a rim twice the weight is something on the order of .1 of 1% .
This horse is dead. If you wish to ride a light bike with light wheels, go right ahead and I hope being pleased with the resulting ride is the result you get. You then ride lots cuz that's the idea, yes?